Wednesday, May 2, 2012


Systematic (IUPAC) name
phenyl]oxazolidin-5-yl]methyl} thiophene-2-carboxamide
Clinical data
Trade namesXarelto
AHFS/Drugs.comMicromedex Detailed Consumer Information
Licence dataEMA:LinkUS FDA:link
Pregnancy cat.C (US)
Legal statusPOM (UK) -only (US)
Pharmacokinetic data
Bioavailability80% to 100%; Cmax = 2 – 4 hours (10 mg oral)[1]
MetabolismCYP3A4 , CYP2J2 and CYP-independent mechanisms[1]
Half-life10 mg oral 7 – 11 hours[1]
Excretion2/3 metabolized in liver and 1/3 eliminated unchanged[1]
CAS number366789-02-8 
ATC codeB01AX06
PubChemCID 6433119
ChemSpider8051086 Yes
Chemical data
Mol. mass435.882 g/mol
SMILESeMolecules & PubChem
  (what is this?)  (verify)
Rivaroxaban (BAY 59-7939) is an oral anticoagulant invented and manufactured by Bayer; in a number of countries it is marketed as Xarelto.[1] In the United States, it is marketed by Janssen Pharmaceutica.[2] It is the first available orally active direct factor Xa inhibitor. Rivaroxaban is well absorbed from the gut and maximum inhibition of factor Xa occurs four hours after a dose. The effects lasts 8–12 hours, but factor Xa activity does not return to normal within 24 hours so once-daily dosing is possible.

Monday, April 23, 2012

OLED's Manufacturers and commercial uses

OLED technology is used in commercial applications such as displays for mobile phones and portable digital media players, car radios and digital cameras among others. Such portable applications favor the high light output of OLEDs for readability in sunlight and their low power drain. Portable displays are also used intermittently, so the lower lifespan of organic displays is less of an issue. Prototypes have been made of flexible and rollable displays which use OLEDs' unique characteristics. Applications in flexible signs and lighting are also being developed.[70] PhilipsLighting have made OLED lighting samples under the brand name "Lumiblade" available online [71] and Novaled AG based in Dresden, Germany, introduced a line of OLED desk lamps called "Victory" in September, 2011.[72]
OLEDs have been used in most Motorola and Samsung colour cell phones, as well as some HTC, LG and Sony Ericssonmodels.[73] Nokia has also introduced some OLED products including the N85 and the N86 8MP, both of which feature anAMOLED display. OLED technology can also be found in digital media players such as the Creative ZEN V, the iriver clix, the Zune HD and the Sony Walkman X Series.
The Google and HTC Nexus One smartphone includes an AMOLED screen, as does HTC's own Desire and Legend phones. However due to supply shortages of the Samsung-produced displays, certain HTC models will use Sony's SLCD displays in the future,[74] while the Google and Samsung Nexus S smartphone will use "Super Clear LCD" instead in some countries.[75]
Other manufacturers of OLED panels include Anwell Technologies Limited (Hong Kong),[76] AU Optronics (Taiwan),[77] Chi Mei Corporation (Taiwan),[78] LG (Korea),[79] and others.[80]
DuPont stated in a press release in May 2010 that they can produce a 50-inch OLED TV in two minutes with a new printing technology. If this can be scaled up in terms of manufacturing, then the total cost of OLED TVs would be greatly reduced. Dupont also states that OLED TVs made with this less expensive technology can last up to 15 years if left on for a normal eight hour day.[81][82]
The use of OLEDs may be subject to patents held by Eastman Kodak, DuPont, General Electric, Royal Philips Electronics, numerous universities and others.[83] There are by now thousands of patents associated with OLEDs, both from larger corporations and smaller technology companies [1].

Samsung applications

By 2004 Samsung, South Korea's largest conglomerate, was the world's largest OLED manufacturer, producing 40% of the OLED displays made in the world,[84]and as of 2010 has a 98% share of the global AMOLED market.[85] The company is leading the world OLED industry, generating $100.2 million out of the total $475 million revenues in the global OLED market in 2006.[86] As of 2006, it held more than 600 American patents and more than 2800 international patents, making it the largest owner of AMOLED technology patents.[86]
Samsung SDI announced in 2005 the world's largest OLED TV at the time, at 21 inches (53 cm).[87] This OLED featured the highest resolution at the time, of 6.22 million pixels. In addition, the company adopted active matrix based technology for its low power consumption and high-resolution qualities. This was exceeded in January 2008, when Samsung showcased the world's largest and thinnest OLED TV at the time, at 31 inches and 4.3 mm.[88]
In May 2008, Samsung unveiled an ultra-thin 12.1 inch laptop OLED display concept, with a 1,280×768 resolution with infinite contrast ratio.[89]According to Woo Jong Lee, Vice President of the Mobile Display Marketing Team at Samsung SDI, the company expected OLED displays to be used in notebook PCs as soon as 2010.[90]
In October 2008, Samsung showcased the world's thinnest OLED display, also the first to be "flappable" and bendable.[91] It measures just 0.05 mm (thinner than paper), yet a Samsung staff member said that it is "technically possible to make the panel thinner".[91] To achieve this thickness, Samsung etched an OLED panel that uses a normal glass substrate. The drive circuit was formed by low-temperature polysilicon TFTs. Also, low-molecular organic EL materials were employed. The pixel count of the display is 480 × 272. The contrast ratio is 100,000:1, and the luminance is 200 cd/m². The colour reproduction range is 100% of the NTSC standard.
In the same month, Samsung unveiled what was then the world's largest OLED Television at 40-inch with a Full HD resolution of 1920×1080 pixel.[92] In the FPD International, Samsung stated that its 40-inch OLED Panel is the largest size currently possible. The panel has a contrast ratio of 1,000,000:1, a colour gamut of 107% NTSC, and a luminance of 200 cd/m² (peak luminance of 600 cd/m²).
At the Consumer Electronics Show (CES) in January 2010, Samsung demonstrated a laptop computer with a large, transparent OLED display featuring up to 40% transparency[93] and an animated OLED display in a photo ID card.[94]
Samsung's latest AMOLED smartphones use their Super AMOLED trademark, with the Samsung Wave S8500 and Samsung i9000 Galaxy S being launched in June 2010. In January 2011 Samsung announced their Super AMOLED Plus displays, which offer several advances over the older Super AMOLED displays: real stripe matrix (50% more sub pixels), thinner form factor, brighter image and an 18% reduction in energy consumption.[95]
At CES 2012, Samsung introduced the first 55" TV screen that uses Super OLED technology.[96]

Sony applications

Sony XEL-1, the world's first OLED TV.[97] (front)
Sony XEL-1 (side)
The Sony CLIÉ PEG-VZ90 was released in 2004, being the first PDA to feature an OLED screen.[98] Other Sony products to feature OLED screens include the MZ-RH1 portable minidisc recorder, released in 2006[99] and the Walkman X Series.[100]
At the 2007 Las Vegas Consumer Electronics Show (CES), Sony showcased 11-inch (28 cm, resolution 960×540) and 27-inch (68.5 cm, full HD resolution at 1920×1080) OLED TV models.[101] Both claimed 1,000,000:1 contrast ratios and total thicknesses (including bezels) of 5 mm. In April 2007, Sony announced it would manufacture 1000 11-inch OLED TVs per month for market testing purposes.[102] On October 1, 2007, Sony announced that the 11-inch model, now called the XEL-1, would be released commercially;[97] the XEL-1 was first released in Japan in December 2007.[103]
In May 2007, Sony publicly unveiled a video of a 2.5-inch flexible OLED screen which is only 0.3 millimeters thick.[104] At the Display 2008 exhibition, Sony demonstrated a 0.2 mm thick 3.5 inch display with a resolution of 320×200 pixels and a 0.3 mm thick 11 inch display with 960×540 pixels resolution, one-tenth the thickness of the XEL-1.[105][106]
In July 2008, a Japanese government body said it would fund a joint project of leading firms, which is to develop a key technology to produce large, energy-saving organic displays. The project involves one laboratory and 10 companies including Sony Corp. NEDO said the project was aimed at developing a core technology to mass-produce 40 inch or larger OLED displays in the late 2010s.[107]
In October 2008, Sony published results of research it carried out with the Max Planck Institute over the possibility of mass-market bending displays, which could replace rigid LCDs and plasma screens. Eventually, bendable, transparent OLED screens could be stacked to produce 3D images with much greater contrast ratios and viewing angles than existing products.[108]
Sony exhibited a 24.5" prototype OLED 3D television during the Consumer Electronics Show in January 2010.[109]
In January 2011, Sony announced the PlayStation Vita handheld game console (the successor to the PSP) will feature a 5-inch OLED screen.[110]
On February 17, 2011, Sony announced its 25" OLED Professional Reference Monitor aimed at the Cinema and high end Drama Post Production market.[111]
On January 07, 2012 Sony announced they will abandon OLED development for the mass market and instead settle on adopting "Crystal LED" as an alternative.[112][113]

LG applications

As of 2010, LG Electronics produced one model of OLED television, the 15 inch 15EL9500[114] and has announced a 31" OLED 3D television for March 2011.[115] On December 26, 2011, LG officially announced the "world's largest 55" OLED panel" then featured it at CES 2012.[116]

Recom Group/Video Name Tag applications

On January 6, 2011, Los Angeles based technology company, Recom Group introduced the first small screen consumer application of the OLED at the Consumer Electronics Show in Las Vegas. This was a 2.8" OLED display being used as a wearable Video Name Tag..[117] At the Consumer Electronics Show in 2012, Recom Group introduced the World's first Video Mic Flag incorporating three 2.8" OLED displays on a standard broadcasters mic flag. The Video Mic Flag allowed video content and advertising to be shown on a broadcasters standard mic flag

OLED Disadvantages

Current costsOLED manufacture currently requires process steps that make it extremely expensive. Specifically, it requires the use of Low-Temperature Polysilicon backplanes; LTPS backplanes in turn require laser annealing from an amorphous silicon start, so this part of the manufacturing process for AMOLEDs starts with the process costs of standard LCD, and then adds an expensive, time-consuming process that cannot currently be used on large-area glass substrates.LifespanThe biggest technical problem for OLEDs was the limited lifetime of the organic materials.[56] In particular, blue OLEDs historically have had a lifetime of around 14,000 hours to half original brightness (five years at 8 hours a day) when used for flat-panel displays. This is lower than the typical lifetime of LCD, LED or PDP technology—each currently rated for about 25,000–40,000 hours to half brightness, depending on manufacturer and model.[57][58]However, some manufacturers' displays aim to increase the lifespan of OLED displays, pushing their expected life past that of LCD displays by improving light outcoupling, thus achieving the same brightness at a lower drive current.[59][60] In 2007, experimental OLEDs were created which can sustain 400 cd/m2 of luminance for over 198,000 hours for green OLEDs and 62,000 hours for blue OLEDs.[61]Color balance issuesAdditionally, as the OLED material used to produce blue light degrades significantly more rapidly than the materials that produce other colors, blue light output will decrease relative to the other colors of light. This variation in the differential color output will change the color balance of the display and is much more noticeable than a decrease in overall luminance.[62] This can be partially avoided by adjusting colour balance but this may require advanced control circuits and interaction with the user, which is unacceptable for some users. In order to delay the problem, manufacturers bias the colour balance towards blue so that the display initially has an artificially blue tint, leading to complaints of artificial-looking, over-saturated colors. More commonly, though, manufacturers optimize the size of the R, G and B subpixels to reduce the current density through the subpixel in order to equalize lifetime at full luminance. For example, a blue subpixel may be 100% larger than the green subpixel. The red subpixel may be 10% smaller than the green.Efficiency of blue OLEDsImprovements to the efficiency and lifetime of blue OLEDs is vital to the success of OLEDs as replacements for LCD technology. Considerable research has been invested in developing blue OLEDs with high external quantum efficiency as well as a deeper blue color.[63][64] External quantum efficiency values of 20% and 19% have been reported for red (625 nm) and green (530 nm) diodes, respectively.[65][66] However, blue diodes (430 nm) have only been able to achieve maximum external quantum efficiencies in the range of 4% to 6%.[67]Water damageWater can damage the organic materials of the displays. Therefore, improved sealing processes are important for practical manufacturing. Water damage may especially limit the longevity of more flexible displays.[68]Outdoor performanceAs an emissive display technology, OLEDs rely completely upon converting electricity to light, unlike most LCDs which are to some extent reflective;e-ink leads the way in efficiency with ~ 33% ambient light reflectivity, enabling the display to be used without any internal light source. The metallic cathode in an OLED acts as a mirror, with reflectance approaching 80%, leading to poor readability in bright ambient light such as outdoors. However, with the proper application of a circular polarizer and anti-reflective coatings, the diffuse reflectance can be reduced to less than 0.1%. With 10,000 fc incident illumination (typical test condition for simulating outdoor illumination), that yields an approximate photopic contrast of 5:1.Power consumptionWhile an OLED will consume around 40% of the power of an LCD displaying an image which is primarily black, for the majority of images it will consume 60–80% of the power of an LCD: however it can use over three times as much power to display an image with a white background such as a document or website.[69] This can lead to reduced real-world battery life in mobile devices when white backgrounds are used. This disadvantage has led to alternative mobile platform solutions, such as Black Google Mobile, that provide black background alternatives when otherwise unavailable.UV sensitivityOLED displays can be damaged by prolonged exposure to UV light. The most pronounced example of this can be seen with a near UV laser (such as a Bluray pointer) and can damage the display almost instantly with more than 20 mW leading to dim or dead spots where the beam is focused. This is usually avoided by installing a UV blocking filter over the panel and this can easily be seen as a clear plastic layer on the glass. Removal of this filter can lead to severe damage and an unusable display after only a few months of room light exposure.

OLED Advantages

The different manufacturing process of OLEDs lends itself to several advantages over flat panel displays made with LCD technology. Lower cost in the future OLEDs can be printed onto any suitable substrate by an inkjet printer or even by screen printing,[53] theoretically making them cheaper to produce than LCD or plasma displays. However, fabrication of the OLED substrate is more costly than that of a TFT LCD, until mass production methods lower cost through scalability. Roll-roll vapour-deposition methods for organic devices do allow mass production of thousands of devices per minute for minimal cost, although this technique also induces problems in that multi-layer devices can be challenging to make due to registration issues, lining up the different printed layers to the required degree of accuracy. Light weight & flexible plastic substrates OLED displays can be fabricated on flexible plastic substrates leading to the possibility of flexible organic light-emitting diodes being fabricated or other new applications such as roll-up displays embedded in fabrics or clothing. As the substrate used can be flexible such as PET,[54] the displays may be produced inexpensively. Wider viewing angles & improved brightness OLEDs can enable a greater artificial contrast ratio (both dynamic range and static, measured in purely dark conditions) and viewing angle compared to LCDs because OLED pixels directly emit light. OLED pixel colours appear correct and unshifted, even as the viewing angle approaches 90° from normal. Better power efficiency LCDs filter the light emitted from a backlight, allowing a small fraction of light through so they cannot show true black, while an inactive OLED element does not produce light or consume power.[55] Response time OLEDs can also have a faster response time than standard LCD screens. Whereas LCD displays are capable of between 2 and 16 ms response time offering a refresh rate of 60 to 480 Hz, an OLED can theoretically have less than 0.01 ms response time, enabling up to 100,000 Hz refresh rate.