Monday, April 23, 2012

OLED Device architectures

Structure Bottom or top emission Bottom emission devices use a transparent or semi-transparent bottom electrode to get the light through a transparent substrate. Top emission devices[45][46] use a transparent or semi-transparent top electrode emitting light directly. Top-emitting OLEDs are better suited for active-matrix applications as they can be more easily integrated with a non-transparent transistor backplane. Transparent OLEDs Transparent OLEDs use transparent or semi-transparent contacts on both sides of the device to create displays that can be made to be both top and bottom emitting (transparent). TOLEDs can greatly improve contrast, making it much easier to view displays in bright sunlight.[47] This technology can be used in Head-up displays, smart windows or augmented reality applications.

 Graded Heterojunction Graded heterojunction OLEDs gradually decrease the ratio of electron holes to electron transporting chemicals.[48] This results in almost double the quantum efficiency of existing OLEDs. Stacked OLEDs Stacked OLEDs use a pixel architecture that stacks the red, green, and blue subpixels on top of one another instead of next to one another, leading to substantial increase in gamut and color depth, and greatly reducing pixel gap. Currently, other display technologies have the RGB (and RGBW) pixels mapped next to each other decreasing potential resolution. Inverted OLED In contrast to a conventional OLED, in which the anode is placed on the substrate, an Inverted OLED uses a bottom cathode that can be connected to the drain end of an n-channel TFT especially for the low cost amorphous silicon TFT backplane useful in the manufacturing of AMOLED displays.[49] [edit]Patterning technologies Patternable organic light-emitting devices use a light or heat activated electroactive layer. A latent material (PEDOT-TMA) is included in this layer that, upon activation, becomes highly efficient as a hole injection layer. Using this process, light-emitting devices with arbitrary patterns can be prepared.[50] Colour patterning can be accomplished by means of laser, such as radiation-induced sublimation transfer (RIST).[51] Organic vapour jet printing (OVJP) uses an inert carrier gas, such as argon or nitrogen, to transport evaporated organic molecules (as in Organic Vapor Phase Deposition). The gas is expelled through a micron sized nozzle or nozzle array close to the substrate as it is being translated. This allows printing arbitrary multilayer patterns without the use of solvents. Conventional OLED displays are formed by vapor thermal evaporation (VTE) and are patterned by shadow-mask. A mechanical mask has openings allowing the vapor to pass only on the desired location. [edit]Backplane technologies For a high resolution display like a TV, a TFT backplane is necessary to drive the pixels correctly. Currently, Low Temperature Polycrystalline silicon LTPS-TFT is used for commercial AMOLED displays. LTPS-TFT has variation of the performance in a display, so various compensation circuits have been reported.[45] Due to the size limitation of the excimer laser used for LTPS, the AMOLED size was limited. To cope with the hurdle related to the panel size, amorphous-silicon/microcrystalline-silicon backplanes have been reported with large display prototype demonstrations

No comments:

Post a Comment